6月29日 黄一知:Modular invariance of (logarithmic) intertwining operators

时间:2023-06-21浏览:131设置

讲座题目:Modular invariance of (logarithmic) intertwining operators

主讲人:黄一知  教授

主持人:罗栗 教授

开始时间:2023-06-29 13:00

讲座地址:数学楼126

主办单位:数学科学学院

 

报告人简介:

       黄一知,美国罗格斯大学教授,主要从事量子场论的数学理论及其在代数、几何、拓扑、弦论和凝聚态物理中的应用,其中的代表性研究工作包括建立公理化的顶点算子代数的定义,顶点算子代数的张量范畴理论的研究,顶点算子代数框架下一般形式的Verlinde猜想的证明等。在Duke Math. J.、Comm. Math. Phys.、Trans. Amer. Math. Soc.、Selecta Math.等著名期刊发表高水平学术论文,其中包括一本Mem. Amer. Math. Soc.专著,被同行文章引用超2000篇次,并担任国际知名数学杂志Commun. Contemp. Math.主编以及SCI杂志New York J. Math.编委。

 

报告内容:

       I will discuss a proof of a conjecture of almost twenty years on the modular invariance of (logarithmic) intertwining operators. Let V be a C_2-cofinite vertex operator algebra without nonzero elements of negative weights. The conjecture states that the vector space spanned by pseudo-q-traces shifted by -c/24 of products of (logarithmic) intertwining operators among grading-restricted generalized V-modules is a module for the modular group SL(2, Z). In 2015, Fiordalisi proved that such pseudo-q-traces are absolutely convergent and have the genus-one associativity property and some other properties. Recently, I have proved this conjecture completely. This modular invariace result gives a construction of C_2-cofinite genus-one logarithmic conformal field theories. We expect that it will play an important role in the study of problems and conjectures on C_2-cofinite logarithmic conformal field theories.



返回原图
/