4月19日 何勇 :Matrix Kendall’s tau in High-dimensions: with Applications to Matrix Factor Model and 2-Dimensional (sparse) Principal Component Analysis

时间:2024-04-12浏览:89设置

讲座题目:Matrix Kendall’s tau in High-dimensions: with Applications to Matrix Factor Model and 2-Dimensional (sparse) Principal Component Analysis

主讲人:何勇 教授

主持人:唐炎林 教授

开始时间:2024-04-19 10:00

讲座地址:普陀校区理科大楼理科大楼A1114

主办单位:统计学院


报告人简介:

       何勇,山东大学金融研究院,教授, 博士生导师,山东大学齐鲁青年学者, 山东省高等学校“金融科技数学理论”青年创新团队负责人; 山东大学学士(2012),复旦大学博士(2017),师从张新生教授;从事金融计量统计、数理统计以及机器学习等方面的研究,在国际统计学、计量经济学权威期刊JoE, JBES, Biometrics(封面文章), Biostatistics,JCGS等发表研究论文30余篇;现主持国家自然科学基金面上项目。获第一届统计科学技术进步奖一等奖(第二位),担任中国现场统计研究会生存分析分会副理事长、中国现场统计研究会机器学习分会常务理事及JASA,JRSSB,AOS,JOE,JBES, Biometrics等国际学术期刊匿名审稿人。


报告内容:

In this talk, I will introduce a new type of Kendall's tau for robust statistics, names as matrix-type Kendall's tau, which generalize the spatial Kendall's tau (Marden, 1999) in the literature to deal with random matrix elliptical observations. I will elaborate on its use in robust estimation for both factor model and principal eigenvectors (under both sparse and non-sparse settings) in High-dimensions. I will also introduce how to extend the tool to deal with high-order tensors. We also develop an R package “MKendall” which is available at CRAN.



返回原图
/