7月16日 李崇道:Minimum-Degree Perfect Gaussian Integer Sequences From Monomial o-Polynomials

时间:2019-07-08浏览:81设置


讲座题目:Minimum-Degree Perfect Gaussian Integer Sequences From Monomial o-Polynomials

主讲人:李崇道  教授

主持人:李成举  副教授

开始时间:2019-07-16 17:00:00  结束时间:2019-07-16 18:00:00

讲座地址:中北校区理科楼B1202

主办单位:计算机科学与软件工程学院

  

报告人简介:

        李崇道,台湾义守大学教授,IEEE Senior Member,获得6项专利,发表SCI学术期刊论文30篇,其中IEEE期刊22篇,8篇在旗舰期刊Transactions   on Information Theory5篇在Transactions   on Communications7篇在Communications   Letters2篇在Signal Processing   Letters),获得科技部电信学门个人专题计划(2008-2019),补助总额920万元。担任IEEE Information Theory Society   Tainan Chapter副主席(2017-2018),兼任义守大学图书与咨讯处副处长 (2018-present)


报告内容:

A Gaussian integer is a  complex number whose real and imaginary parts are both integers. A Gaussian  integer sequence is called \textit{perfect} if it satisfies the ideal periodic auto-correlation functions. That is, let $\mathbf S=(s(0),s(1),\ldots,s(N-1))$ be a complex sequence of period $N$, where   $s(t)=u(t)+v(t)i$ for $u(t),v(t)\in\mathbb{Z}$, and $i=\sqrt{-1}$.The   complex sequence $\mathbf S$ is said to be a {\em perfect Gaussian integer   sequence} if \begin{eqnarray}

\label{Rsformula}   R_{\mathbf S}(\tau)=\sum_{t=0}^{N-1}

s(t){s^*(t+\tau)}

\end{eqnarray}

is nonzero for $\tau=0$   and is zero for any $1\leq \tau \leq N-1$, where $s^*$ denotes the conjugate of a complex number $s$. The \textit{degree} of a Gaussian integer sequence   is defined to be the number of distinct nonzero Gaussian integers within one period of the sequence. In fact, its minimum degree is two. This study   proposes a new construction method, called monomial o-polynomials, to generate the minimum-degree perfect Gaussian integer sequences. The resulting sequences have odd periods and high energy efficiency. Furthermore, the number of cyclically distinct perfect Gaussian integer sequences is shown.

  


返回原图
/