7月6日 沈佐伟:Deep Approximation via Deep Learing

时间:2019-06-28浏览:146设置


讲座题目:Deep Approximation via Deep Learing

主讲人:沈佐伟  教授

主持人:沈超敏  副教授

开始时间:2019-07-06 15:00:00  结束时间:2019-07-06 16:00:00

讲座地址:中北校区理科大楼B1002

主办单位:计算机科学与软件工程学院

  

报告人简介:

       沈佐伟教授,新加坡国立大学理学院院长,陈振传百年纪念教授,新加坡国家科学院院士。主要研究领域为逼近与小波理论、时频分析、图像科学等。沈佐伟教授在加拿大阿尔伯塔大学获博士学位,是美国数学会会士(AMS Fellow)、美国工业与应用数学会会士(SIAM Fellow)。作为国际著名数学家,沈佐伟教授先后获得Wavelet   Pioneer奖、新加坡国立大学杰出科学研究奖和新加坡科学成就奖,并受邀在2010年国际数学家大会上作45分钟报告。


报告内容:

The primary task of many applications is approximating/estimating a function through samples drawn from a probability distribution on the input space. The deep approximation is to approximate a function by compositions of many layers of simple functions, that can be viewed   as a series of nested feature extractors. The key idea of deep learning network is to convert layers of compositions to layers of tunable parameters that can be adjusted through a learning process, so that it achieves a good approximation with respect to the input data.

In this talk, we shall discuss mathematical foundation behind this new approach of approximation; how it differs from the classic approximation theory, and how this new theory can be applied to understand and design deep learning network.

  


返回原图
/