7月3日 冯宝峰:From discrete integrable system to continuous integrable system

时间:2019-06-25浏览:53设置


讲座题目:From discrete integrable system to continuous integrable system

主讲人:冯宝峰  教授

主持人:陈勇  教授

开始时间:2019-07-03 10:30:00   结束时间:2019-07-03 12:30:00

讲座地址:中北校区数学馆东202

主办单位:计算机科学与软件工程学院

  

报告人简介:

       Baofeng Feng(冯宝峰)教授毕业于清华大学,获物理学及数学双学士学位,后获得京都大学博士学位,现任得克萨斯大学UTRGV数学与统计学院终身教授。冯博士在应用与计算数学领域建树颇丰,研究兴趣主要包括非线性波及其在流体力学与非线性光学中的应用,连续与离散可积系统以及PDE的数值解法。冯教授至今已在国际知名期刊上发表学术论文70余篇,曾获6项来自美国国家科学基金、中国国家自然科学基金委员会海外及港澳学者合作研究基金、美国国防部及陆军研究局的项目资助。冯博士分别于20072012年两次荣获日本学术振兴会Research   Fellow访问东京大学、京都大学、早稻田大学等,组织国际会议四次及国际会议专题30余次。


报告内容:

In this talk, I will give a review on recent development of integrable system, especially the discrete inegrable system. It is known that the tau-functions play a crucial role in both the continuous and discrete integrable sytems. We will start with a type of Gam determinant   solution and show it satisfies the Hirota-Miwa equation, or the discrete Kadomtsev-Petviashvili (KP) equation. By introducing Schur polynomial, and Miwa transformation, we will derive the KP hierarchy, whose reductions give rise to the Korteweg-de Vries (KdV) equation and Boussinesq equation. Then we will show by simple transformations, the discrete KP equation can be   transformed into discrete modified KP equation and the discrete KP-Toda lattice equation, which in turn lead to the modified KP and KP-Toda hierarchy, whose reductions give the modified KdV equation and Sine-Gordon equation, respectively.

  


返回原图
/